A Description of Iterative Reflections of Monads
نویسندگان
چکیده
For ideal monads in Set (e. g. the finite list monad, the finite bag monad etc.) we have recently proved that every set generates a free iterative algebra. This gives rise to a new monad. We prove now that this monad is iterative in the sense of Calvin Elgot, in fact, this is the iterative reflection of the given ideal monad. This shows how to freely add unique solutions of recursive equations to a given algebraic theory. Examples: the monad of free commutative binary algebras has the monad of binary rational unordered trees as iterative reflection, and the finite list monad has the iterative reflection given by adding an absorbing element. In mathematics you don’t understand things. You just get used to them. John von Neumann (1903–1957)
منابع مشابه
Iterative reflections of monads
Iterative monads, introduced by Calvin Elgot in the 1970’s, are those ideal monads in which every guarded system of recursive equations has a unique solution. For every ideal monad M we prove that an iterative reflection, i.e., an embedding M ↪−→ M̂ into an iterative monad with the expected universal property, exists. We also introduce the concept of iterativity for algebras for the monad M, fol...
متن کاملUnifying Guarded and Unguarded Iteration
Models of iterated computation, such as (completely) iterative monads, often depend on a notion of guardedness, which guarantees unique solvability of recursive equations and requires roughly that recursive calls happen only under certain guarding operations. On the other hand, many models of iteration do admit unguarded iteration. Solutions are then no longer unique, and in general not even de...
متن کاملGuarded and Unguarded Iteration for Generalized Processes
Models of iterated computation, such as (completely) iterative monads, often depend on a notion of guardedness, which guarantees unique solvability of recursive equations and requires roughly that recursive calls happen only under certain guarding operations. On the other hand, many models of iteration do admit unguarded iteration. Solutions are then no longer unique, and in general not even de...
متن کاملCompletely iterative algebras and completely iterative monads
Completely iterative theories of Calvin Elgot formalize (potentially infinite) computations as solutions of recursive equations. One of the main results of Elgot and his coauthors is that infinite trees form a free completely iterative theory. Their algebraic proof of this result is extremely complicated. We present completely iterative algebras as a new approach to the description of free comp...
متن کاملOn Iteratable Endofunctors
Completely iterative monads of Elgot et al. are the monads such that every guarded iterative equation has a unique solution. Free completely iterative monads are known to exist on every iteratable endofunctor H, i. e., one with final coalgebras of all functors H( ) + X. We show that conversely, if H generates a free completely iterative monad, then it is iteratable.
متن کامل